Video Navigation Based on Self-Organizing Maps
نویسندگان
چکیده
Content-based video navigation is an efficient method for browsing video information. A common approach is to cluster shots into groups and visualize them afterwards. In this paper, we present a prototype that follows in general this approach. The clustering ignores temporal information and is based on a growing self-organizing map algorithm. They provide some inherent visualization properties such as similar elements can be found easily in adjacent cells. We focus on studying the applicability of SOMs for video navigation support. We complement our interface with an original time bar control providing – at the same time – an integrated view of time and content based information. The aim is to supply the user with as much information as possible on one single screen, without overwhelming him.
منابع مشابه
Using Self-Organizing Maps to Support Video Navigation
Content-based video navigation is an efficient method for browsing video information. A common approach is to cluster shots into groups and visualize them afterwards. In this paper, we present a prototype that follows in general this approach. Unlike the existing systems, the clustering is based on a growing self-organizing map algorithm. We focus on studying the applicability of SOMs for video...
متن کاملContent Based Analysis of Email Databases Using Self-Organizing Maps
In this paper we present an approach to organize and classify e-mails using self-organizing maps. The aim is on the one hand to provide an intuitive visual profile of the considered mailing lists and on the other hand to offer an intuitive navigation tool, were similar e-mails are located close to each other, so that the user can scan easily for e-mails similar in content. Furthermore, each gro...
متن کاملVideoSOM: A SOM-Based Interface for Video Browsing
The VideoSOM sytem is a tool for content-based video navigation based on a growing self-organizing map. Our interface allows the user to browse the video content using simultaneously several perspectives, temporal as well as content-based representations of the video. Combined with the interaction possibilities between them this allows for efficient searching of relevant information in video co...
متن کاملGreen Product Consumers Segmentation Using Self-Organizing Maps in Iran
This study aims to segment the market based on demographical, psychological, and behavioral variables, and seeks to investigate their relationship with green consumer behavior. In this research, self-organizing maps are used to segment and to determine the features of green consumer behavior. This was a survey type of research study in which eight variables were selected from the demographical,...
متن کاملDocument Clustering and Visualization with Latent Dirichlet Allocation and Self-Organizing Maps
Clustering and visualization of large text document collections aids in browsing, navigation, and information retrieval. We present a document clustering and visualization method based on Latent Dirichlet Allocation and self-organizing maps (LDA-SOM). LDA-SOM clusters documents based on topical content and renders clusters in an intuitive twodimensional format. Document topics are inferred usin...
متن کامل